This paper proposes a probabilistic framework based on movement primitives for robots that work in collaboration with a human coworker. Since the human coworker can execute a variety of unforeseen tasks a requirement of our system is that the robot assistant must be able to adapt and learn new skills on-demand, without the need of an expert programmer. Thus, this paper leverages on the framework of imitation learning and its application to human-robot interaction using the concept of Interaction Primitives (IPs).We introduce the use of Probabilistic Movement Primitives(ProMPs) to devise an interaction method that both recognizes the action of a human and generates the appropriate movement primitive of the robot assistant. We evaluate our method on experiments using a lightweight arm interacting with a human partner and also using motion capture trajectories of two humans assembling a box. The advantages of ProMPs in relation to the original formulation for interaction are exposed and compared.